Lesson 1. Introduction, Random Variables and Distributions

1 Introduction

- Probability is the study of random events
- Statistics is the study of how to collect, organize, analyze, and interpret numerical information from data
- Descriptive statistics involves organizing, picturing, and summarizing information from samples or populations
- Inferential statistics involves using information from a sample to draw conclusions regarding the population

Example 1. It is a common belief that the normal, healthy human temperature is $98.6^{\circ} \mathrm{F}$.
When a temperature measurement is made, the measurement's value may vary from exactly $98.6^{\circ} \mathrm{F}$.
A probability question: Suppose the temperature measurements are normally distributed with mean $98.6^{\circ} \mathrm{F}$ and standard deviation $1^{\circ} \mathrm{F}$.

A statistics question: Suppose we do not have any idea what the normal temperature of a healthy human is, but we observe three measurements of $98.5,96.0$, and 100.1.

- A goal of statistics is to turn data into useful information
- Statistical conclusions are uncertain, but statisticians insist on quantifying the uncertainty
- Probability is the mathematical tool used in this quantification
- In this course, we will...
- learn how to use and assess statistical regression models
- employ statistical software to implement and analyze these models
- learn how to present statistical analysis in both a technical and non-technical format
- learn about the limitations of statistical analysis
- But first, a brief probability review

2 Random variables

- A random variable is a variable that takes on its values by chance
- Examples of random variables:
- $X=$ number of heads out of 10 coin flips
- $Y=$ temperature of a healthy human
- Notation conventions:
- Uppercase letter (e.g., X, Y, Z) to denote a random variable
- Lowercase letter (e.g., x, y, z) to denote an observation of a random variable (i.e., a data value)
- A random variable is continuous if it can take on a continuum of values

3 Distributions

- The distribution of a random variable is a mathematical description of how the observations of a random variable vary
- For a continuous random variable X, we can represent its distribution two ways
- The cumulative distribution function (cdf) $F_{X}(a)$ gives the probability that X is less than or equal to a
- In other words,
- The probability density function (pdf) $f_{X}(a)$ gives the relative likelihood of X being near a
- In particular,
- The cdf and pdf are related as follows:
- The cdf $F_{X}(a)$ answers the question: "How often does X have a value less than a ?"
- What about the reverse question: "What value is X less than $(100 \times p) \%$ of the time?"
- We can use the inverse of the cdf to answer this question
- The p-quantile $F_{X}^{-1}(p)$ is the value a such that $P(X \leq a)=p$
- In other words,
- We will generally use cdfs for calculations and pdfs for visualization

4 Calculating and visualizing probabilities with distributions

- Area under $f_{X}(x)$ from $x=-\infty$ to $x=\infty$:
- Therefore,

$$
P(X \leq a)+P(X \geq a)=
$$

- If $f_{X}(x)$ is symmetric around 0 and $a>0$:

- Using the area under $f_{X}(x)$ from $x=a$ to $x=b$:

$$
P(a \leq X \leq b)=
$$

- Suppose the area under $f_{X}(x)$ from $x=-\infty$ to $x=a$ is p

5 Some families of distributions

- Let's brainstorm - what are some families of distributions you remember from SM239?
- The normal distribution $N\left(\mu, \sigma^{2}\right)$ with mean μ and variance σ^{2}
- The pdf of $N\left(\mu, \sigma^{2}\right)$ is symmetric around μ and bell-shaped
- The standard normal distribution $N(0,1)$ is the special case with $\mu=0$ and $\sigma^{2}=1$

- The t-distribution $t(d)$ with d degrees of freedom
- Like $N(0,1)$, the pdf of $t(d)$ is symmetric around 0 and bell-shaped
- Compared to $N(0,1)$, the pdf of $t(d)$ has "heavier tails"
\Longrightarrow
- As d increases, $t(d)$ approaches $N(0,1)$

- The F-distribution $F\left(d_{1}, d_{2}\right)$ with d_{1} and d_{2} degrees of freedom
- Unlike $N\left(\mu, \sigma^{2}\right)$ and $t(d), F\left(d_{1}, d_{2}\right)$ only takes positive values
- The F-distribution is related to the t-distribution: $t(d)^{2} \sim F(1, d)$

6 Exercises

Problem 1. Let X be a random variable that follows the t-distribution with 8 degrees of freedom. It turns out that $F_{X}(1.4)=0.90$ and $F_{X}(-1.4)=0.10$. Compute the following:
a. $P(X<1.4)$
b. $P(X>1.4)$
c. $P(X<-1.4)$
d. $P(-1.4<X<1.4)$

